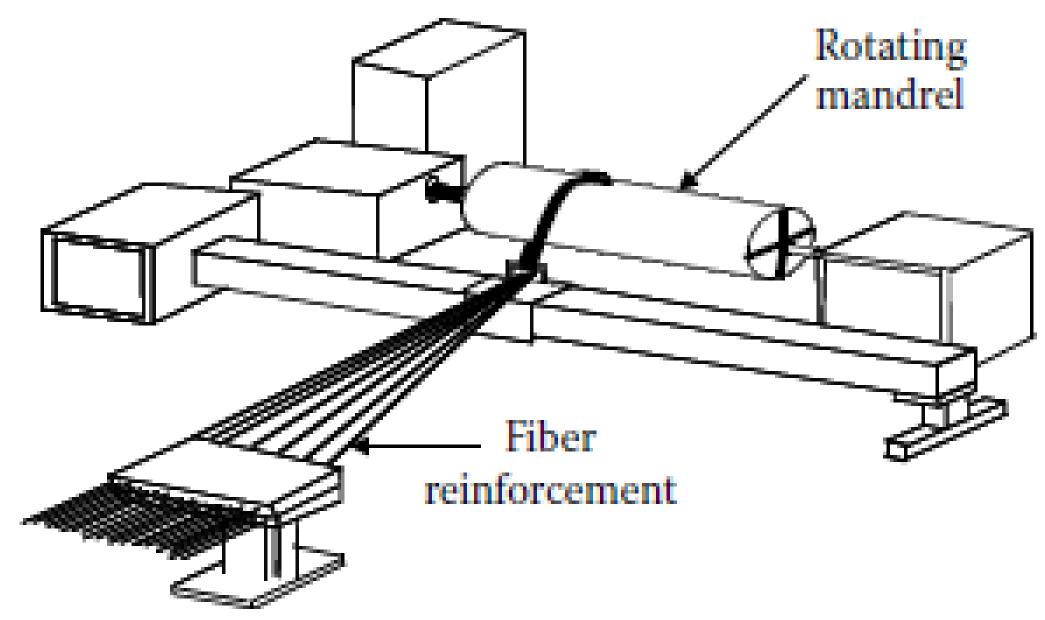
Glass-Polymer Composite High Pressure Pipes and Joints - Design, Manufacture & Characterize

Main Objective

This project was awarded to West Virginia University in order to investigate advanced composite pipes made of pultruded and filament wound Glass Fiber **Reinforced Polymers (GFRP)** as a viable alternative/complementary material to steel for high pressure transmission lines. Investigation of burst pressures of GFRP pipes will be done through experimental methods.

Figure 1. Fiber wound GFRP pipe.

Project Approach/Scope


Major tasks to achieve the objective of the project are:

- Hydrostatic Burst Pressure Testing of GFRP pipe and joints
- Analysis of GFRP pipe and joint behavior
- Prediction of mechanical behavior and failure mechanisms
- Characterization of GFRP pipes and joints

-	C
F	Y
L	
	Fi
M	la
Pr	00
•••	Fil

	re
•	W
*	Сι

Ben Imes, Hota V. S. GangaRao, Udaya B. Halabe **Constructed Facilities Center Department of Civil and Environmental Engineering** West Virginia University

igure 2. Burst pressure testing of fiber wound pipe.

nufacturing

cess of making GFRP wound pipes are:

ibers are wetted by running through a esin bath

let fibers are wound around a mandrel

uring is activated by applying heat to the pipe

Shrink wrap is wrapped around pipe to insure a void free surface

Results to Date

- Pultruded pipes burst at a lower pressure than the fiber wound pipes.
- ii. Three fiber wound pipes of 3/8" wall thickness were tested and yielded an average burst pressure of 2,957 psi, while three 3/4" thick pipes yielded an average burst pressure of 4,814 psi.
 - Failure of wound pipes were due to local delaminations on the interior barrier layer.
 - Failure stress was within 10% of analytical prediction
- iii. Two GFRP wrapped butt joints were tested and failed at 50% of pipe pressure.
 - Joint failures were due to a delamination of the external GFRP wrap and a leak on the edge of the external wrap.

Acknowledgments

This project is funded by DOT/PHMSA's Competitive Academic Agreement Program (Project # DTPH5616HCAP02).

References

- Halabe, U. B., GangaRao, H. V. S., Zondlo, J., Kavi, J., Imes, B., & Cvetnick, A. (2017). Advancement in the Area of Intrinsically Locatable Plastic Materials.
- GangaRao, H. V. S., Halabe, U. B., Zondlo, J., Imes, B., Kavi, J., Pacifico, A., & Cvetnick, A. (2018). Glass-Polymer Composite High Pressure Pipes and Joints - Design, Manufacture & Characterize.

Public Project Page

Please visit the below URL for much more information: https://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=721

Figure 5. Delamination of the external wrap on the butt joint.